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ABSTRACT
Mobile intention recognition is the problem of inferring a mobile
user’s intentions from her behavior in geographic space. Such be-
havior is constrained in space and time. Current approaches, how-
ever, have difficulties to handle temporal constraints. We therefore
propose using the framework of time geography to formalize and
visualize both spatial and temporal constraints for the mobile in-
tention recognition problem. A new rule language is introduced
which allows for modeling intentions with spatial and temporal
constraints. A location-based game application demonstrates that
interpreting a user’s spatio-temporal behavior sequence in terms of
intentions reduces ambiguity compared to mobile intention recog-
nition without temporal constraints.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS; I.2.4
[Artificial Intelligence]: Knowledge Representation Formalisms
and Methods

Keywords
Spatio-temporal Behavior, Intention Recognition, Time Geogra-
phy, Rule Language, Mobile Systems

1. INTRODUCTION
The widespread integration of positioning technologies into mo-

bile devices has lead to an increased interest in processing, analyz-
ing, and interpreting human behavior in geographic space. Spatio-
temporal data mining systems, for instance, analyze large amounts
of motion track data to detect interesting patterns, such as flocking
behavior [8] or user similarity [10]. On the other hand, the analysis
of an individual’s motion track helps to provide better location-
based assistance [6].

In both application areas, tasks need to be solved on three se-
mantic levels. On the lowest level, a geometric analysis regards

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’10 November 2-5, 2010. San Jose, CA, USA
Copyright 2010 ACM ISBN 978-1-4503-0428-3/10/11 ...$10.00.

the spatio-temporal properties of one or several motion tracks (e.g.,
[17]). On the next semantic level, approaches interpret the trajec-
tory using a geo-model of interesting locations. Simple location-
based services that map a user’s position to an appropriate informa-
tion service are one typical example. Intention recognition (IRec),
the highest semantic level, assigns a meaning (in terms of user in-
tentions) to the behavioral data. This allows us to resolve ambigu-
ities that occur if a location offers several possible activities, and
if the user enters a location accidentally. It can enhance intelligent
location-based services that proactively assist their users based on
their behavior.

IRec is based on a model of the user and the domain. In partic-
ular, the intentions a mobile user can have in a certain situation are
constrained by space and time. While current approaches for mo-
bile IRec are able to handle spatial constraints [16], the temporal
aspects have largely been ignored. However, it is clear that tempo-
ral constraints can help to reduce ambiguity. For instance, the time
of the day may help us to decide whether the visitor of a shopping
mall has the intention to go shopping or to the movies located in
the same building. Temporal constraints such as these are the core
idea of the time-geographic framework [3]. Although time geogra-
phy and mobile IRec share these common ideas, time geography in
the context of mobile assistance has so far only been considered for
the planning problem, which is the inverse problem of IRec (e.g.,
[14]). The planning problem has an intrinsic complexity that makes
it challenging to find efficient algorithmic solutions. In contrast, ef-
ficient algorithmic solutions exist for IRec.

In this paper, we propose a new conceptual view on the mo-
bile IRec problem. We relate concepts from time geography and
IRec to each other and introduce a rule-based formalism in order to
model the complex relations between space, time, and intentions
(section 3). An algorithmic solution for the mobile IRec prob-
lem reduces interpretation ambiguities through spatial and temporal
disambiguation. An evaluation with the location-based game City-
Poker shows how the spatio-temporal constraints reduce ambiguity,
compared to formalisms without temporal constraints (section 4).

2. RELATED WORK
Approaches to IRec differ in the way the domain and inten-

tions are represented. While formalisms based on finite-state ma-
chines [1] are not sufficiently expressive for many domains, too
general formalisms lack efficient algorithmic solutions [4]. Prob-
abilistic network based approaches, like [11], come with a previ-
ously learned model that is cognitively difficult to understand for
humans. In mobile assistance we often need to rewrite or modify



Figure 1: Spatial structure and motion track in CityPoker.

the knowledge base to port the system to a new area. This is much
easier with formal grammars, like Probabilistic State-Dependent
Grammars [13] (PSDG). However, as PSDG are not specifically
designed for spatio-temporal knowledge, inference may become in-
tractable.

Spatially-Grounded Intentional Systems (SGIS) are a formal gram-
mar specifically designed for spatial behavior [16]. An SGIS is
a context-free grammar (CFG) on behaviors and intentions, en-
hanced with spatial constraints. The idea of SGIS is to reduce pars-
ing ambiguities by making the applicability of rules dependent on
the space where the behavior occurs. Spatially-Constrained Tree-
Adjoining Grammars (SCTAG) are a spatial formal grammar that
additionally allows to model long-ranging and crossing dependen-
cies between the regions in a long behavior sequence [5] .

Time geography defines the space-time mechanics of locational
presence by taking into account different constraints that limit a
person’s activities in space and time [3]. The possibility of being
present at a specific spatio-temporal location (space-time station)
is determined by the person’s ability to trade time for space. Fun-
damental physical restrictions on abilities and resources are sum-
marized as capability constraints. Coupling constraints refer to the
requirement for a person to be at a specific location at a certain
time or during a specific time interval. Certain domains in life are
controlled by authority constraints, e.g., a person can only shop at
a mall when the mall is open. Space-time paths illustrate the move-
ment of individual agents in space over time. All space-time paths
must lie within space-time prisms (STP), geometrical constructs of
two intersecting cones [9].

Time geography has been applied in the area of Geographic In-
formation Systems (GIS) to model and measure space-time acces-
sibility in transportation networks [15], and for the analysis and
theoretical understanding of disaggregate human spatial behavior
[7]. It has also been advocated to integrate time geography with
both GIS and location-based services (LBS) to achieve more user-
centered systems [14]. Analytical formulations of basic entities and
relationships from time geography can be found in [12].

3. TIME GEOGRAPHY AND INTENTION
RECOGNITION

3.1 The CityPoker Scenario
CityPoker is a location-based game played by two opposing teams

in an urban environment. It is typically played at high speed on a
bike which restricts interaction possibilities with a mobile assis-
tance system. We use this game as a test case for mobile IRec
because it is easy to experiment with different rule sets in a game.
The idea of the game is to improve one’s poker hand by finding
and changing hidden cards. This includes solving multiple-choice
quizzes and a detailed search in the environment. The game takes
place in a set of spatial regions: the game area (Rgame) contains five
disjunct rectangular cache regions (R1, . . . ,R5), each of which con-

Production Rules Grounding

PlayCP→ DiscussStrategy Play Rgame (1)
ReturnHome EvaluateHands

DiscussStrategy→ b0 Rstart (2)
Play→ ChangeInRegion Play | Rgame (3)

ChangeInRegion Rgame (4)
ReturnHome→ (br |bc)+ Rgame (5)

EvaluateHands→ b0 Rstart (6)
ChangeInRegion→ FindRegion HandleRegion Rgame (7)

FindRegion→ (br |bc |b0)+ Rgame (8)
HandleRegion→ SelectCache GotoCache R1 . . . R5 (9)

GetCard
SelectCache→ FindParkingPos SolveQuiz R1 . . . R5 (10)

FindParkingPos→ br R1 . . . R5 (11)
SolveQuiz→ b0 R1 . . . R5 (12)

GotoCache→ ApproachCache GotoCache | R1 . . . R5 (13)
OrientToCache GotoCache | ε R1 . . . R5 (14)

ApproachCache→ (br |bc)+ R1 . . . R5 (15)
OrientToCache→ (bs |bsc |b0)+ R1 . . . R5 (16)

GetCard→ SearchCard | R11 ... R53(17)
SearchCard b0 R11 ... R53(18)

SearchCard→ RoamCache SearchCard | R11 ... R53(19)
DetailSearch SearchCard | ε R11 ... R53(20)

RoamCache→ (br)+ R11 ... R53(21)
DetailSearch→ (bc |bs |bsc |b0)+ R11 ... R53(22)

Figure 2: SGIS production rules for CityPoker.

tains three disjunct circular caches (R11, . . . , R53). The game starts
and ends in the start region (Rstart ). Figure 1 illustrates a typical
motion track and part of the partonomy. There is an overall time
limit to the game, within which the teams must return to their start-
ing position. The rules are described in more detail in [16]. We can
model a team’s behavior with the SGIS production rules displayed
in Fig. 2. Depending on the spatio-temporal properties of motion
track segments, we distinguish the behaviors riding (br), searching
(bs), curving (bc), slow curving (bsc), and standing (b0) (details on
the pre-processing are given in [6]). Some rules are applicable in
the five cache regions, others are applicable in the 15 caches. Rec-
ognizing intentions in CityPoker means assigning one intention to
each behavior in a spatialized behavior sequence. With SGIS, this
problem becomes a problem of parsing. The current intention for
each spatialized behavior is the direct parent node in the parse tree.
The mobile assistance system maps the current intention to an in-
formation service and presents it to the user.

3.2 The Inverse Problem of Time Geographic
Planning

Research on time geography for mobile assistance has been cen-
tered around questions of planning. For instance, what is the opti-
mal plan of a mobile user who wants to perform a set of actions,
given capability, authority, and coupling constraints [14]? The out-
put of the planning problem is an ordered sequence of (action,
station) pairs, including the shortest path and preferred means of
transportation to travel between these stations. Mobile assistance
systems building on intention recognition solve a different prob-
lem. Instead of letting the user specify her intentions beforehand
and proposing an optimal plan, these systems try to infer the user’s
intentions by observing her behavior on-the-fly.

We illustrate the IRec problem for CityPoker with a time geo-
graphic visualization (Fig. 3): the agent is located in the gaming



Figure 3: A time geographic visualization of intention recogni-
tion in CityPoker.

area and we do not know her current and future intentions. How-
ever, we have collected her motion track history and thus know the
stations she has visited. There she has probably had some of the
intentions these stations afford, but we do not know which ones. In
particular, we do not know if the agent had an intention afforded
by a region itself, or by one of the parent regions in the partonomy.
For instance, if the agent crosses a cache, this may also happen
accidentally while having an intention afforded by the enclosing
cache region. We compute a behavior sequence using the spatio-
temporal characteristics of the track and try to interpret it using
production rules of a grammar, grouping behaviors to intentions,
intentions to super-intentions, until we reach the top-level inten-
tion PlayCP. This grouping problem can efficiently be solved with
parsing algorithms. If more than one grouping is possible, we have
an ambiguous behavior sequence, i.e., several possible parse trees.
If these possible parse trees differ in their current intention we have
several hypotheses.

Grammars that include spatial and/or temporal knowledge can
help us to reduce the number of possible hypotheses. Spatial dis-
ambiguation, as supported by SGIS, appears if production rules
cannot be applied because at least one of the leaf node behaviors
in the parse tree is not in one of the regions in which the rule is
grounded. Using time geographic concepts we may achieve three
further types of disambiguation: 1) Time slot disambiguation: a
production cannot be applied because of the current time. In City-
Poker a cache region might be authority constrained between 1 and
3p.m. 2) Durational disambiguation: a production rule can no
more be applied because the agent showed a certain behavior se-
quence for too short or too long. In CityPoker this may happen if
the behaviors of a DetailSearch take too long, and thus the user
has probably changed her strategy. 3) Capability disambiguation:
a hypothetical parse tree requires the agent to be in a certain region
at a certain time in the future, but the agent will never make it on
time because of her capability constraints. In the following, we in-
troduce a new grammar formalism that allows for spatial, time slot,
and durational disambiguation.

Authority Constraints (ac)

Region Timeslot Duration

R1 [8a.m.; 1p.m.] ]0;+∞[
R1 [3p.m.; 10p.m.] ]0;+∞[
R2 [6a.m.; 12:30p.m.] ]0;+∞[
R2 [2:30p.m.; 10p.m.] ]0;+∞[
R5 [6a.m.; 4p.m.] ]0;+∞[

Temporal Constraints (tc)

Rule Timeslot Duration

(1) [6a.m.;10p.m.] [30min;120min]
(2) ]−∞;+∞[ [5min;30min]
(12) ]−∞;+∞[ [2min;5min]
(17) ]−∞;+∞[ [2min;20min]
(18) ]−∞;+∞[ [2min;20min]

Figure 4: A TR-SGIS for CityPoker (extending Fig. 2).

3.3 TR-SGIS: An Intention Recognition Gram-
mar With Spatio-Temporal Knowledge

Each SGIS rule is constrained to a set of points in two-dimensional
space R2. Adding temporal constraints means adding a third di-
mension (R3). In practice, spatial constraints are not expressed
as general point-clouds in R2, but related to a given geo-model
(regions). Accordingly, we express temporal constraints as inter-
vals on a time scale. We also include durational constraints (in-
tervals with minimum and maximum duration). A given behavior
sequence may, for example, be interpreted as DrinkCocktails or
HaveDinner, depending on the duration of all terminal behaviors.
Based on these considerations we define:

A temporally restricted and spatially grounded intentional sys-
tem is a production system TR-SGIS = (B, I, S, P, R, cap, con)
with B (set of behaviors = terminals), I (set of intentions = non
terminals), S (top level intention = start symbol), P (productions
rules), R (set of regions) defined as in SGIS. Capabilities assign
each coordinate and region the shortest time the agent will need to
travel between them. Constraints con = (sc,ac, tc,stc) constrain
the applicability of the production rules: Spatial constraints re-
strict the applicability of a rule to certain regions (as in SGIS),
sc ⊆ P×R. For instance, in CityPoker teams can only change a
card in one of the caches. Authority constraints restrict the accessi-
bility of a region to certain time slots and certain duration intervals,
ac ⊆ R×T × (R×R). For instance, in CityPoker teams can only
act in cache regions that are currently open to the public. We can
also imagine durational authority constraints, such as 75 minutes
parking signs that define the maximum time you are allowed to
stay in that parking area. Temporal constraints restrict the applica-
bility of a rule to certain time slots and certain duration intervals,
tc⊆ P×T × (R×R). For instance, we can assume that CityPoker
is played only during daytime and with a duration between half
an hour and two hours. Spatio-temporal constraints are those con-
straints that are dependent on all three dimensions and cannot be
expressed with sc, ac, or tc: stc⊆ P×R×T × (R×R)

Figure 4 extends the SGIS example from Fig. 2 and shows how
a TR-SGIS could look like for CityPoker. Spatial constraints are
already included in the ‘Grounding’ column of Fig. 2. Capabilities
cap are not displayed, but may be computed from travel distances
(on a road network) and the player’s speed.



# input ambig. # input behavior ambig.

1 (b0, Rstart , 13:00) (1, 1, 1) 16 (br, R3, 13:38) (2, 2, 2)
2 (br, Rgame, 13:15) (1, 1, 1) 17 (bsc, R3, 13:39) (2, 1, 1)
3 (bc, Rgame, 13:17) (1, 1, 1) 18 (bs, R31, 13:40) (2, 2, 2)
4 (br, Rgame, 13:19) (2, 1, 1) 19 (br, R3, 13:41) (4, 3, 1)
5 (bc, Rgame, 13:21) (1, 1, 1) 20 (b0, R3, 13:42) (5, 2, 1)
6 (br, Rgame, 13:23) (2, 1, 1) 21 (bc, R3, 13:43) (4, 2, 1)
7 (br, R1, 13:25) (2, 2, 1) 22 (br, R3, 13:44) (5, 3, 1)
8 (br, R12, 13:27) (2, 2, 1) 23 (b0, R33, 13:45) (6, 4, 2)
9 (br, R1, 13:29) (2, 2, 1) 24 (bsc, R33, 13:46) (2, 2, 2)
10 (bc, Rgame, 13:31) (1, 1, 1) 25 (b0, R33, 13:47) (4, 4, 4)
11 (br, Rgame, 13:32) (2, 1, 1) 26 (br, R33, 13:48) (4, 4, 4)
12 (bc, Rgame, 13:33) (1, 1, 1) 27 (bs, R33, 13:49) (2, 2, 2)
13 (br, Rgame, 13:34) (2, 1, 1) 28 (b0, R33, 13:50) (4, 4, 4)
14 (br, R32, 13:35) (2, 2, 2) 29 (br, R3, 13:51) (4, 3, 3)
15 (b0, R32, 13:36) (2, 2, 2) 30 (br, R3, 13:52) (5, 4, 4)

Figure 5: Behavior sequence in CityPoker with ambiguity val-
ues for three formalisms (CFG, SGIS, TR-SGIS).

4. EVALUATION
We evaluate TR-SGIS with a behavior sequence from a real City-

Poker game session ((behavior, region, time) triples in Fig. 5). Be-
haviors have been annotated manually, in order to avoid preprocess-
ing errors. We extend Earley’s well-known CFG state-chart parser
[2] to TR-SGIS parsing. The output is a stream of sets of intentions.
If a set contains more than one intention the according behavior is
ambiguous. The size of the set indicates the degree of ambiguity.
We use the production rules and constraints from Figs. 2 and 4.

The ambiguity values in Fig. 5 for the three incremental algo-
rithms (CFG, SGIS, TR-SGIS) show that the location information
of SGIS strongly reduces the ambiguity compared to CFG pars-
ing. TR-SGIS reduces ambiguity whenever temporal constraints
apply: for instance, the input with indices 7 to 9 has a reduced
ambiguity because TR-SGIS can exploit the knowledge that R1 is
not accessible at that time (time slot disambiguation). This quali-
tative analysis of the disambiguation capabilities is confirmed by a
quantitative analysis that compares the number of output sets that
are non-ambiguous. CFG has 6 (20%), SGIS has 11 (37%), and
TR-SGIS has 18 (60%). This demonstrates that disambiguation re-
lying on temporal contraints is not just a theoretical option but an
effective strategy for dealing with empirical behavior sequences.

5. CONCLUSION AND OUTLOOK
We have introduced the idea of using concepts from time geog-

raphy to model mobile intention recognition problems. For rec-
ognizing a user’s intentions the system needs a model of spatio-
temporal behavior in the application domain. We have presented a
new formal grammar, TR-SGIS, that allows us to elegantly model
spatial and temporal constraints. Results of interpreting an empir-
ical behavior sequence from CityPoker show how spatio-temporal
constraints reduce ambiguity, compared to unconstrained and only
spatially constrained formalisms. We expect that mobile assistance
systems implementing ‘intention-aware’ services can better predict
their users’ information needs than those using simple location-
based services. Part of our future work is the portation of TR-
SGIS to other location-based services, such as tourist or exhibition
guides. We chose a game as an example here because it allowed us
to easily change the rule-sets and geographic embedding. From a
conceptual point of view, we will consider the integration of tem-
poral constraints in the SCTAG formalism [5].
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